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Abstract
We discuss examples of systems which can be quantized consistently, although
they do not admit a Lagrangian description.

PACS numbers: 45.20.Jj, 03.65.Ca, 02.40.Gh

Whether a given set of equations of motion admits or not a Lagrangian formulation has been
an interesting issue for a long time. As early as 1887, Helmholtz formulated necessary and
sufficient conditions for this to happen, and the problem has a rich history [1]. More recently,
motivated by some unpublished work of Feynman [2], a connection was made between
the existence of a Lagrangian and the commutation relations satisfied by a given system
[3, 4]. Reference [3] concluded that under general conditions, including commutativity
of the coordinates, [qi, qj ] = 0, the equations of motion of a point particle admit a
Lagrangian formulation. The purpose of this paper is to demonstrate the reverse, namely that
noncommutativity of the coordinates forbids a Lagrangian formulation (therefore a Lagrangian
implies commutativity). This happens in all but a few cases, which we all identify. On the
other hand, an extended Hamiltonian formulation always remains available. It permits the
quantization of the system in any of the three usual formalisms: operatorial, wavefunction
or path integral. Several examples will be used to illustrate the properties of such unusual
systems.

We work in a (2+1)-dimensional space, although our considerations easily extend to
higher dimensions, and assume that

[q1, q2] = iθ �= 0. (1)

For generality, we allow for a nonzero commutator between the momenta, [p1, p2] = iσ , in
addition to the usual [qi, pj ] = iδij relations. The commutation relations of interest are thus

[xa, xb] = i�ab x1,2,3,4 = q1, q2, p1, p2 (2)
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with the constant antisymmetric matrix �ab = (ω−1)ab given by

� =




0 θ 1 0
−θ 0 0 1
−1 0 0 σ

0 −1 −σ 0


 ω = 1

1 − θσ




0 σ −1 0
−σ 0 0 −1
1 0 0 θ

0 1 −θ 0


 . (3)

We have denoted the phase space variables q1, q2, p1, p2 by xa, a = 1, 2, 3, 4. Equations (2)
and (3), together with a given Hamiltonian H, completely determine the dynamics.

1. Classical dynamics: general

At the classical level, equations (2) and (3) correspond to the following fundamental Poisson
brackets:

{xa, xb} = �ab. (4)

For two generic functions A and B, {A,B} ≡ ∂A
∂xa

�ab
∂B
∂xb

. We will first show that a dynamical
system obeying (4) does not allow (in most cases) a Lagrangian formulation.

A classical system with Hamiltonian H(xi) and Poisson brackets (4) has the following
equations of motion [5]:

ẋa = {xa,H } = �ab

∂H

∂xb

a, b = 1, 2, 3, 4. (5)

More explicitly,

q̇i = ∂H

∂pi

+ θεij

∂H

∂qj

ṗi = −∂H

∂qi

+ σεij

∂H

∂pj

i, j = 1, 2. (6)

Above, ε12 = −ε21 = 1. When θ = σ = 0, equations (6) become the usual Hamilton
equations.

We assume that H = 1
2m

(
p2

1 +p2
2

)
+V (q1, q2) (for kinetic terms of the form (pi −Ai(q))2,

see [5]). The momenta are then given by

pi = mq̇i − mθεij

∂V

∂qj

. (7)

Eliminating them from (6), one obtains the coordinate equations of motion,

mq̈i = −(1 − θσ )
∂V

∂qi

+ σεij q̇j + mθεij

d

dt

∂V

∂qj

i = 1, 2. (8)

As previously noted [5], if θ �= 0, equations (8) are not in general derivable from a Lagrangian.
We will make this statement precise, through the use of the Helmholtz conditions. Those state
[1, 3, 4] that a force Fi is derivable from a Lagrangian, i.e. Fi = − ∂W

∂qi
+ d

dt
∂W
∂q̇i

where
W(qi, q̇i , t), if and only if Fi is at most a linear function of the accelerations q̈i , and it satisfies

∂Fi

∂q̈j

= ∂Fj

∂q̈i

∂Fi

∂q̇j

+
∂Fj

∂q̇i

= d

dt

(
∂Fi

∂q̈j

+
∂Fj

∂q̈i

)
(9)

∂Fi

∂qj

− ∂Fj

∂qi

= 1

2

d

dt

(
∂Fi

∂q̇j

− ∂Fj

∂q̇i

)
. (10)

In our case the Helmholtz conditions reduce to
∂F1

∂q̇2
+

∂F2

∂q̇1
= 0

∂F1

∂q̇1
= ∂F2

∂q̇2
= 0 (11)
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∂F1

∂q2
− ∂F2

∂q1
= 1

2

d

dt

(
∂F1

∂q̇2
− ∂F2

∂q̇1

)
. (12)

Equations (11) and (12) constrain the potential V in equation (8) to be of the form

V (q1, q2, t) = 1
2 a

(
q2

1 + q2
2

)
+ b(t)q1 + c(t)q2. (13)

For generality, we allowed explicit time dependence of V . This permits b(t), c(t) to be
arbitrary functions of time. The coefficient a of the quadratic term is constrained by (12) to
be constant. Thus the most general equations of motion engendered by (2), which do admit a
Lagrangian description, are

mq̈1 = −a(1 − θσ ) q1 + (σ + θma) q̇2 + [θmċ − (1 − θσ ) b] (14)

mq̈2 = −a(1 − θσ ) q2 − (σ + θma) q̇1 − [θmḃ + (1 − θσ ) c] (15)

with the constant a and b(t), c(t). The right-hand-side term contains three types of solvable
forces: harmonic oscillator, magnetic field and homogeneous (possibly time dependent). The
general solution of equations (14) and (15) can be found by standard methods. We will discuss
particular cases, which illustrate their properties better. Of course, when θ = 0, σ = 0, one
gets the usual behaviour that is expected from potential (13). Otherwise, some surprising
effects appear. First, even when V = 0, one has an effective magnetic field σ acting on
the whole 2D plane. All the particles are equally charged under it. Second, the external
homogeneous force disappears not only if b = c = 0, but also if b = β cos γ t, c = β sin γ t

and ω = (1 − θσ )/θm. Thus, from a ‘commutative’ point of view, one applies oscillatory
forces along the directions q1 and q2, but no force is registered due to noncommutativity (NC)
of the coordinates! Third, if σ + θma = 0, the magnetic-like force disappears. Finally, if
1 = θσ , one has no Newton-like term at all. In this case the system undergoes a dimensional
reduction. The system of differential equations (6) becomes degenerate and a first-order
Lagrangian description exists [5, 6].

A few remarks are in order. First, an interesting situation appears when 0 < |1 − σθ | � 1,
and

√
σ is big enough with respect to the momentum scales appearing in the potential V . Then,

the dynamics in equation (8) is controlled by the magnetic force εijσ q̇j , and the potential V

can be treated as a small perturbation.
Second, cf equations (7), (8), (14) and (15), σ and θ at least partially play the role

of magnetic fields, in a way depending also on the potential V . ‘Primordial magnetic
fields’, which are of much interest nowadays, can thus be generated by simply assuming
noncommutativity. Although those effective magnetic fields would be tiny, they would be
coherent over large distances, contributing to large-scale (e.g. cosmological) dynamics.

Third, a Lagrangiam formulation can still be constructed for noncommuting coordinates,
at a certain price. One can mix the q and p through linear noncanonical transformations
which block-diagonalize the symplectic form (3). This however transfers nonlinearity from
the potential term to the kinetic term of the Hamiltonian, a highly undesirable feature. Another
possibility [7] is to double the number of degrees of freedom, write a first-order Lagrangian
in the extended space, then get rid of the unphysical degrees of freedom via constrained
quantization. The first-order Lagrangian looks however very much like a Hamiltonian, and
the constraint analysis proceeds anyway in Hamiltonian form.

2. Classical dynamics: examples

We proceed with examples which do not admit a Lagrangian formulation, and display some
of their features.
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Consider first the anisotropic harmonic oscillator potential, V = 1
2

(
a1q

2
1 + a2q

2
2

)
, which

gives the equations of motion

mq̈1 = −(1 − θσ )a1q1 + (σ + θma2) q̇2 (16)

mq̈2 = −(1 − θσ )a2q2 − (σ + θma1) q̇1. (17)

If we chose σ + mθa2 = 0, then σ + mθa1 �= 0, provided a1 �= a2. q1 becomes a harmonic
oscillator, whereas q2 is a harmonic oscillator driven by a periodic force mθ(a1 − a2)q̇1. The
solution for q1 is the usual one, q1(t) = q1(0) cos ω1t + (q ′

1(0)/ω1) sin ω1t , whereas for q2 it
reads

q2(t) = q2(0) cos ω2t +
q ′

2(0)

ω2
sin ω2t + θm

q ′
1(0) cos ω1t − ω1q1(0) sin ω1t

1 − θσ
. (18)

Above, mω2
i = (1 − θσ )ai, i = 1, 2. If θ is small, the last term in equation (18) is a

perturbation which produces oscillations around the commutative trajectory. The particle
goes on a wiggly path, which averages to the commutative one. If θ is big, or if |1 − θσ | � 1,
the ‘perturbation’ explodes and dominates the dynamics, which becomes completely different
from the commutative one. One sees a qualitative difference between a NC isotropic oscillator
(which admits a Lagrangian form) and a NC anisotropic one (no Lagrangian form).

As a second example consider, commutatively speaking, a constant force along q2, and a
harmonic one along q1, V = 1

2a1q
2
1 + bq2. The equations of motion are

mq̈1 = −(1 − θσ )a1q1 + σ q̇2 (19)

mq̈2 = −(1 − θσ )b − (σ + θma1)q̇1. (20)

If σ = 0, again q1 is a harmonic oscillator, while q2 is driven by a constant plus periodic force.
The solution is the usual harmonic oscillator for q1, while for q2 one has

q2(t) = q2(0) + [q ′
2(0) + q1(0)θa1]t − bt2

2m
− θa1

[
q1(0)

ω1
sin ω1t − q ′

1(0)

ω2
1

(1 − cos ω1t)

]
.

(21)

Again, the NC trajectory wiggles around the commutative one. On the other hand, if
σ + θma1 = 0, q2 feels a constant force, while the oscillator q1 is driven by a linearly
time-dependent force σ q̇2. One has the solution q2(t) = q2(0) + tq ′

2(0) − (1 − θσ ) bt2

2m
, but

q1(t) = q1(0) cos ω1t +
q ′

1(0)

ω1
sin ω1t +

σ

a1

[
q ′

2(0)

(1 − θσ )
− b

m
t

]
. (22)

A drastic change occurs: q1 grows linearly with time (it is not bounded anymore), and oscillates
around this path as a commutative oscillator.

As a third example, consider a potential which depends only on one coordinate, say
V = V (q1). If σ = 0 the equations of motion are

mq̈1 = −∂1V mq̈2 = −θm
d

dt
∂1V = −θm2 d3q1

dt3
. (23)

If θ �= 0, q1 transfers nontrivial dynamics to q2. More precisely, once q1(t) is known (its
implicit form is t (q1) = ∫ q1

0
dq ′√

V (0)−V (q ′) ), q2 is fixed by the second equation in (23). To

illustrate this, consider the quartic potential V (q1) = V (0) − 1
2m2q2

1 + gq4
1 . One cannot find

simple expressions for q1(t) in a nonlinear problem in general. However, the classical solution
satisfying q1(t = −∞) = 0 and q1(t = 0) = m√

g
= λ is simple enough

q1(t) = m√
g

2 e−mt

1 + e−2mt
. (24)
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Calculating q2(t) via (23) one obtains

q2(t) = q2(0) + q ′
2(0)t − θmq̇1(t) (25)

radically different from the θ = 0 expression, q2(t) = q2(0) + q ′
2(0)t .

Time-dependent backgrounds appearing ‘out-of-nowhere’ are thus possible in NC
dynamics see also equations (14) and (15).

3. Quantization: formalism

We have shown that, except for isotropic quadratic terms and linear couplings (constant forces),
no Lagrangian formulation is available on NC spaces. We discuss now the quantization of
such systems.

Operatorial quantization is trivially implemented using equations (2) and (3):

d

dt
x̂a = i[x̂a, H ] = i[x̂a, x̂b]

∂H

∂x̂b

= �ab

∂H

∂x̂b

. (26)

The equations of motion (26) are an extension of the usual Heisenberg ones. They are the
same as (5), with the coordinates becoming operators.

A phase space path integral for systems obeying the commutation relations (2) was
constructed in [8]. We do not repeat it here.

A Schrödinger (wavefunction) formulation can be constructed as follows. First, choose a
basis in the Hilbert space on which the operators x̂a act, for instance |q1, p2〉, i.e. the eigenstates
of the operators q̂1 and p̂2. Second, for an arbitrary state |ψ〉, define the wavefunction (half in
coordinate space, half in momentum space)

ψ(q1, p2, t) ≡ 〈ψ(t)|q1, p2〉. (27)

The commutation relations (2) imply that the operators q̂2 and p̂1 have the following action
on ψ :

q̂2ψ = i
(
∂p2 − θ∂q1

)
ψ p̂1ψ = i

(− ∂q1 + σ∂p2

)
ψ. (28)

If H = 1
2m

(
p̂2

1 + p̂2
2

)
+ V (q̂1, q̂2), (28) leads to the Schrödinger equation

i
d

dt
ψ = Hψ =

[
1

2m

(
p2

2 − (
∂q1 − σ∂p2

)2
)

+ V
(
q1, i∂p2 − iθ∂q1

)]
ψ(q1, p2). (29)

If σ = 0, a momentum-space wavefunction ψ(p1, p2, t) also exists; it will be discussed later.

4. Quantization: examples

For an harmonic potential, it can be shown by path integrals [8], or operatorially [9], that
the only change induced by NC is an anisotropy of the oscillator. However, starting with an
anisotropic oscillator, V = 1

2

(
a1q

2
1 + a2q

2
2

)
, a1 �= a2, makes an important difference. The

equations of motion are the same as in (16) and (17), with q1,2 operators. For simplicity,
assume σ + mθa2 = 0; then σ + mθa1 �= 0. q̂2 is driven by a periodic force and, being of form
(18), transitions between the states of the quantum system will appear.

Our second example, V = 1
2a1q

2
1 + bq2, also exhibits peculiar behaviour. If σ = 0, the

operator solutions of (19) and (20) again involve transitions which would be absent if θ = 0.
If σ + θma1 = 0, changes are more dramatic. Equation (22) shows that the particle is not
bounded anymore along q1, in contrast to the commutative case.
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Third, consider the case in which the potential depends only on one coordinate,
V = V (q1). If σ = 0 an interesting phenomenon takes place. The commutation relations (2)
admit a representation on the basis |p1, p2〉, ψ(p1, p2, t) ≡ 〈ψ(t)|p1, p2〉:

q̂1ψ = (
i∂p1 + θαp2

)
ψ q̂2ψ = (

i∂p2 + θ(1 + α)p1
)
ψ(p1, p2) (30)

with α a parameter, and the Schrödinger equation becomes

i
d

dt
ψ =

[
1

2m

(
p2

1 + p2
2

)
+ V

(
i∂p1 + θp2, i∂p2 + θ(1 + )p1

)]
ψ(p1, p2). (31)

This equation is (gauge) invariant under shifts of α by ,

α → α −  (32)

combined with multiplications of the momentum-space wavefunction by a phase eiθp1p2 ,

ψ(p1, p2) → eiθp1p2ψ(p1, p2). (33)

θ plays the role of a ‘magnetic field’ in momentum space.
In particular, when  = α, q̂1 becomes θ -independent. Then, if V = V (q1), the

Schrödinger equation is θ -independent. It has consequently the same spectrum with the
commutative problem, although classically the NC system does not even admit a Lagrangian
formulation! For example, V (q1, q2) = V (q1) = V (0) − 1

2m2q2
1 + gq4

1 , on a NC space, gives
rise to a nonlinear system without classical Lagrangian formulation, cf (13), but which has the
same spectrum as the corresponding commutative (Lagrangian) system.

If V = V (q1, q2) the above gauge invariance persists, but does not eliminate θ from the
wave equation.

We conclude (in opposition with the spirit of [3]) that non-Lagrangian systems can be
consistently quantized. The formalism truly relevant for their quantization is the Hamiltonian
one. The examples we used to illustrate this point appear to have an interesting, or at least
intriguing, behaviour.
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